Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Electron. j. biotechnol ; 42: 6-15, Nov. 2019. ilus, graf, tab
Article in English | LILACS | ID: biblio-1087345

ABSTRACT

Background: The increasing rate of breast cancer globally requires extraordinary efforts to discover new effective sources of chemotherapy with fewer side effects. Glutaminase-free L-asparaginase is a vital chemotherapeutic agent for various tumor malignancies. Microorganisms from extreme sources, such as marine bacteria, might have high L-asparaginase productivity and efficiency with exceptional antitumor action toward breast cancer cell lines. Results: L-Asparaginase-producing bacteria, Bacillus velezensis isolated from marine sediments, were identified by 16S rRNA sequencing. L-Asparaginase production by immobilized cells was 61.04% higher than that by free cells fermentation. The significant productivity of enzyme occurred at 72 h, pH 6.5, 37°C, 100 rpm. Optimum carbon and nitrogen sources for enzyme production were glucose and NH4Cl, respectively. L-Asparaginase was free from glutaminase activity, which was crucial medically in terms of their severe side effects. The molecular weight of the purified enzyme is 39.7 KDa by SDS-PAGE analysis and was ideally active at pH 7.5 and 37°C. Notwithstanding, the highest stability of the enzyme was found at pH 8.5 and 70°C for 1 h. The enzyme kinetic parameters displayed Vmax at 41.49 µmol/mL/min and a Km of 3.6 × 10−5 M, which serve as a proof of the affinity to its substrate. The anticancer activity of the enzyme against breast adenocarcinoma cell lines demonstrated significant activity toward MDA-MB-231 cells when compared with MCF-7 cells with IC50 values of 12.6 ± 1.2 µg/mL and 17.3 ± 2.8 µg/mL, respectively. Conclusion: This study provides the first potential of glutaminase-free L-asparaginase production from the marine bacterium Bacillus velezensis as a prospect anticancer pharmaceutical agent for two different breast cancer cell lines.


Subject(s)
Asparaginase/metabolism , Bacillus/enzymology , Breast Neoplasms/metabolism , Glutaminase/metabolism , Asparaginase/biosynthesis , Temperature , Breast Neoplasms/drug therapy , Kinetics , Cells, Immobilized , Enzyme Assays , Fermentation , MCF-7 Cells , Hydrogen-Ion Concentration
2.
Braz. j. microbiol ; 49(2): 285-295, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-889238

ABSTRACT

Abstract Different technologies may be used for decolorization of wastewater containing dyes. Among them, biological processes are the most promising because they seem to be environmentally safe. The aim of this study was to determine the efficiency of decolorization of two dyes belonging to different classes (azo and triphenylmethane dyes) by immobilized biomass of strains of fungi (Pleurotus ostreatus - BWPH, Gleophyllum odoratum - DCa and Polyporus picipes - RWP17). Different solid supports were tested for biomass immobilization. The best growth of fungal strains was observed on the washer, brush, grid and sawdust supports. Based on the results of dye adsorption, the brush and the washer were selected for further study. These solid supports adsorbed dyes at a negligible level, while the sawdust adsorbed 82.5% of brilliant green and 19.1% of Evans blue. Immobilization of biomass improved dye removal. Almost complete decolorization of diazo dye Evans blue was reached after 24 h in samples of all strains immobilized on the washer. The process was slower when the brush was used for biomass immobilization. Comparable results were reached for brilliant green in samples with biomass of strains BWPH and RWP17. High decolorization effectiveness was reached in samples with dead fungal biomass. Intensive removal of the dyes by biomass immobilized on the washer corresponded to a significant decrease in phytotoxicity and a slight decrease in zootoxicity of the dye solutions. The best decolorization results as well as reduction in toxicity were observed for the strain P. picipes (RWP17).


Subject(s)
Basidiomycota/metabolism , Water Pollutants, Chemical/metabolism , Coloring Agents/metabolism , Azo Compounds/metabolism , Trityl Compounds/metabolism , Biotransformation , Cells, Immobilized/metabolism , Adsorption , Wastewater
3.
Braz. j. microbiol ; 49(1): 38-44, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889215

ABSTRACT

ABSTRACT Discharge of coke-oven wastewater to the environment may cause severe contamination to it and also threaten the flora and fauna, including human beings. Hence before dumping it is necessary to treat this dangerous effluent in order to minimize the damage to the environment. Conventional technologies have inherent drawbacks however, biological treatment is an advantageous alternative method. In the present study, bacteria were isolated from the soil collected from the sites contaminated by coke-oven effluent rich in phenol and cyanide. Nucleotides sequence alignment and phylogenetic analysis showed the identity of the selected phenol and cyanide degrading isolates NAUN-16 and NAUN-1B as Pseudomonas putida and Pseudomonas stutzeri, respectively. These two isolates tolerated phenol up to 1800 mg L-1 and cyanide up to 340 mg L-1 concentrations. The isolates were immobilized on activated charcoal, saw dust and fly ash. The effluent was passed through the column packed with immobilized cells with a flow rate of 5 mL min-1. The isolates showed degradation of phenol up to 80.5% and cyanide up to 80.6% and also had the ability to reduce biological oxygen demand, chemical oxygen demand and lower the pH of effluent from alkaline to near neutral. The study suggests the utilization of such potential bacterial strains in treating industrial effluent containing phenol and cyanide, before being thrown in any ecosystem.


Subject(s)
Cyanides/metabolism , Phenol/metabolism , Pseudomonas putida/metabolism , Pseudomonas stutzeri/metabolism , Waste Disposal, Fluid/methods , Wastewater/microbiology , Biodegradation, Environmental , Cells, Immobilized/classification , Cells, Immobilized/metabolism , Coke/analysis , Cyanides/analysis , Industrial Waste/analysis , Phenol/analysis , Phylogeny , Pseudomonas putida/classification , Pseudomonas putida/genetics , Pseudomonas putida/isolation & purification , Pseudomonas stutzeri/classification , Pseudomonas stutzeri/genetics , Pseudomonas stutzeri/isolation & purification , Wastewater/analysis
4.
Braz. j. microbiol ; 49(supl.1): 140-150, 2018. tab, graf
Article in English | LILACS | ID: biblio-974343

ABSTRACT

Abstract Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20 × 20 × 5 mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54 g/L and 1.36 g/L h, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360 h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.


Subject(s)
Saccharomyces cerevisiae/metabolism , Industrial Microbiology/methods , Sorghum/microbiology , Ethanol/metabolism , Saccharomyces cerevisiae/chemistry , Cells, Immobilized/metabolism , Cells, Immobilized/chemistry , Sorghum/metabolism , Sorghum/chemistry , Ethanol/analysis , Alginates/chemistry , Fermentation
5.
Braz. j. microbiol ; 48(3): 515-521, July-Sept. 2017. graf
Article in English | LILACS | ID: biblio-889145

ABSTRACT

Abstract Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30 °C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability.


Subject(s)
Bacteria/chemistry , Microbiological Techniques/methods , Ammonia/metabolism , Oxidation-Reduction , Polyvinyl Alcohol/chemistry , Temperature , Bacteria/metabolism , Microbiological Techniques/economics , Microbiological Techniques/instrumentation , Cells, Immobilized/metabolism , Cells, Immobilized/chemistry , Glucuronic Acid/chemistry , Alginates/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration
6.
Electron. j. biotechnol ; 27: 44-48, May. 2017. tab
Article in English | LILACS | ID: biblio-1010289

ABSTRACT

Background: Depletion of petroleum resources has enforced the search for alternative sources of renewable energy. Introduction of biofuels into the market was expected to become a solution to this disadvantageous situation. Attempts to cover fuel demand have, however, caused another severe problem­the waste glycerol generated during biodiesel production at a concentration of approximately 10% w/w. This, in turn, prompted a global search for effective methods of valorization of the waste fraction of glycerol. Results: Utilization of the waste fraction at 48 h with an initial glycerol concentration of 30 g·L-1 and proceeding with 62% efficiency enabled the production of 9 g·L-1 dihydroxyacetone at 50% substrate consumption. The re-use of the immobilized biocatalyst resulted in a similar concentration of dihydroxyacetone (8.7 g·L-1) in two-fold shorter time, with an efficiency of 85% and lower substrate consumption (35%). Conclusions: The method proposed in this work is based on the conversion of waste glycerol to dihydroxyacetone in a reaction catalyzed by immobilized Gluconobacter oxydans cell extract with glycerol dehydrogenase activity, and it could be an effective way to convert waste glycerol into a valuable product.


Subject(s)
Cells, Immobilized/metabolism , Dihydroxyacetone/metabolism , Glycerol/metabolism , Waste Products , Cell Extracts , Cells, Immobilized/chemistry , Gluconobacter oxydans , Biofuels , Recycling , Renewable Energy , Glycerol/chemistry
7.
Electron. j. biotechnol ; 19(3): 43-48, May 2016. ilus
Article in English | LILACS | ID: lil-787006

ABSTRACT

Background: D-Hydroxyphenylglycine is considered to be an important chiral molecular building-block of antibiotic reagents such as pesticides, and β-lactam antibiotics. The process of its production is catalyzed by D-hydantoinase and D-carbamoylase in a two-step enzyme reaction. How to enhance the catalytic potential of the two enzymes is valuable for industrial application. In this investigation, an Escherichia coli strain genetically engineered with D-hydantoinase was immobilized by calcium alginate with certain adjuncts to evaluate the optimal condition for the biosynthesis of D-carbamoyl-p-hydroxyphenylglycine (D-CpHPG), the compound further be converted to D-hydroxyphenylglycine (D-HPG) by carbamoylase. Results: The optimal medium to produce D-CpHPG by whole-cell immobilization was a modified Luria-Bertani (LB) added with 3.0% (W/V) alginate, 1.5% (W/V) diatomite, 0.05% (W/V) CaCl2 and 1.00 mM MnCl2.The optimized diameter of immobilized beads for the whole-cell biosynthesis here was 2.60 mm. The maximized production rates of D-CpHPG were up to 76%, and the immobilized beads could be reused for 12 batches. Conclusions: This investigation not only provides an effective procedure for biological production of D-CpHPG, but gives an insight into the whole-cell immobilization technology.


Subject(s)
Escherichia coli , Amidohydrolases , Glycine/analogs & derivatives , Cells, Immobilized , Glycine/biosynthesis
8.
Braz. j. microbiol ; 46(3): 667-672, July-Sept. 2015. ilus
Article in English | LILACS | ID: lil-755816

ABSTRACT

Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.

.


Subject(s)
Biodegradation, Environmental , Cells, Immobilized/metabolism , Insecticides/metabolism , Micrococcus/metabolism , Pyrethrins/metabolism , Alginates , Glucuronic Acid , Hexuronic Acids , Micrococcus/classification , Polyurethanes
9.
Braz. j. microbiol ; 45(3): 929-932, July-Sept. 2014. ilus, tab
Article in English | LILACS | ID: lil-727022

ABSTRACT

The β-ketoester benzyl acetoacetate was enantioselectively reduced to benzyl (S)-3-hydroxybutanoate by seven microorganism species. The best result using free cells was obtained with the yeast Hansenula sp., which furnished 97% ee and 85% of conversion within 24 h. After immobilization in calcium alginate spheres, K.marxianus showed to be more stable after 2 cycles of reaction.


Subject(s)
Acetoacetates/metabolism , Benzyl Compounds/metabolism , Kluyveromyces/metabolism , Pichia/metabolism , Cells, Immobilized/metabolism , Oxidation-Reduction , Time Factors
10.
Chinese Journal of Biotechnology ; (12): 305-309, 2014.
Article in Chinese | WPRIM | ID: wpr-279520

ABSTRACT

Sugarcane bagasse modified by polyethylenimine (PEI) and glutaraldehyde (GA) was used as a carrier to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. The effects of chemically modified sugarcane bagasse on batch and repeat-batch fermentations were investigated. Batch fermentation was conducted with an addition of 10 g/L modified sugarcane bagasse and 60 g/L glucose, resulting in a high solvent concentration of 21.67 g/L and productivity of 0.60 g/(L x h) with the treatment of 4 g/L PEI and 1 g/L GA. Compared to the fermentations by free cells and immobilized cells on unmodified sugarcane bagasse, the productivity increased 130.8% and 66.7%, respectively. The fibrous-bed bioreactor also maintained a stable butanol production during repeat-batch fermentations, achieving a maximum productivity of 0.83 g/(L x h) with a high yield of 0.42 g/g.


Subject(s)
Batch Cell Culture Techniques , Bioreactors , Butanols , Metabolism , Cells, Immobilized , Cellulose , Metabolism , Clostridium acetobutylicum , Metabolism , Fermentation , Saccharum , Chemistry
11.
Chinese Journal of Biotechnology ; (12): 315-319, 2014.
Article in Chinese | WPRIM | ID: wpr-279518

ABSTRACT

The cis-epoxysuccinate hydrolase (CESH) from Rhizobium strain BK-20 is the key enzyme for L(+)-tartaric acid production. To establish a highly efficient and stable production process, we first optimized the enzyme production from Rhizobium strain BK-20, and then developed an immobilized cell-culture process for sustained production of L(+)-tartaric acid. The enzyme activity of free cells reached (3 498.0 +/- 142.6) U/g, and increased by 643% after optimization. The enzyme activity of immobilized cells reached (2 817.2 +/- 226.7) U/g, under the optimal condition with sodium alginate as carrier, cell concentration at 10% (W/V) and gel concentration at 1.5% (W/V). The immobilized cells preserved high enzyme activity and normal structure after 10 repeated batches. The conversion rate of the substrate was more than 98%, indicating its excellent production stability.


Subject(s)
Alginates , Chemistry , Cells, Immobilized , Glucuronic Acid , Chemistry , Hexuronic Acids , Chemistry , Hydrolases , Metabolism , Rhizobium , Metabolism , Tartrates , Metabolism
12.
Pakistan Journal of Pharmaceutical Sciences. 2013; 26 (6): 1077-1082
in English | IMEMR | ID: emr-148534

ABSTRACT

The immobilization of bacillus spp. GU215 on silicon polymer beads, wood chips was performed and antibiotic peptide [bacitracin] production, optimization of parameters were investigated. The immobilized cells presented elevated levels of activity than free cells. The silicon polymer based cells showed widest zones of inhibitions [18mm] in 72 hours and 4% concentration of glucose, PH 8 and 30°C, whereas a marginal decrease in the activity [14mm] was noticed in case of wood chips based immobilization systems and least stable immobilization in 72 hours incubation time, 4% glucose concentration, PH 8 and 30°C. This study illustrates that the silicon polymer based beads facilitate a strong interactions with bacitracin producing cells and render them suitable for excessive and long time production of antibiotic


Subject(s)
Bacillus , Cells, Immobilized , Wood , Silicon , Polymers
13.
IJPR-Iranian Journal of Pharmaceutical Research. 2013; 12 (3): 411-421
in English | IMEMR | ID: emr-138298

ABSTRACT

For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi design was employed for screening the significant variables in the bioconversion medium. Sequentially, Box-Behnken design experiments under Response Surface Methodology [RSM] was used for further optimization. Four factors [isoeugenol, NaCl, biomass and tween 80 initial concentrations], which have significant effects on vanillin yield, were selected from ten variables by Taguchi experimental design. With the regression coefficient analysis in the Box-Behnken design, a relationship between vanillin production and four significant variables was obtained, and the optimum levels of the four variables were as follows: initial isoeugenol concentration 6.5 g/L, initial tween 80 concentration 0.89 g/L, initial NaCl concentration 113.2 g/L and initial biomass concentration 6.27 g/L. Under these optimized conditions, the maximum predicted concentration of vanillin was 2.25 g/L. These optimized values of the factors were validated in a triplicate shaking flask study and an average of 2.19 g/L for vanillin, which corresponded to a molar yield 36.3%, after a 24 h bioconversion was obtained. The present work is the first one reporting the application of Taguchi design and Response surface methodology for optimizing bioconversion of isoeugenol into vanillin under resting cell conditions


Subject(s)
Eugenol/analogs & derivatives , Benzaldehydes/metabolism , Industrial Microbiology , Cells, Immobilized , Benzaldehydes/chemistry , Eugenol/chemistry , Eugenol/metabolism , Mass Spectrometry , Psychrobacter/genetics , Psychrobacter/isolation & purification
14.
Braz. j. microbiol ; 44(1): 189-195, 2013. graf, tab
Article in English | LILACS | ID: lil-676907

ABSTRACT

Chitosanase production of Gongronella sp. JG cells immobilized in calcium alginate gel and polyurethane foam was compared with that of the free cells, there was a 60% increase in the enzyme yield (2429 U/L) compared to the highest yield obtained from free cells (1513 U/L). The optimal immobilization parameters (concentrations of sodium alginate, calcium chloride, bead inoculums, bead diameter, etc) for the enhanced production of chitosanase were determined as: sodium alginate 2% (w/v), 0.1 M calcium chloride, inoculum 10 mL beads to 100 mL production media and 2.7 mm bead diameter. Maximum chitosanase production was achieved with initial pH of 5.5 and temperature of 30 ºC. The alginate beads had well stability, retained 85% ability of enzyme production even after 7 cycles of repeated batch fermentation. These results showed the immobilization technique was a feasible and economical method for chitosansase production by Gongronella sp. JG.


Subject(s)
Animals , Alginates , Crustacea/enzymology , Crustacea/microbiology , Fermentation , Aquatic Fungi/analysis , Polyurethanes/analysis , Chitosan/analysis , Chitosan/isolation & purification , Sodium/analysis , Attention , Cells, Immobilized , Enzyme Activation , Food Samples , Methods , Reference Standards
15.
Braz. j. microbiol ; 43(4): 1499-1507, Oct.-Dec. 2012. graf, tab
Article in English | LILACS | ID: lil-665837

ABSTRACT

Bio-ethanol production from cane molasses (diluted to 15 % sugar w/v) was studied using the bacterium, Zymomonas mobilis MTCC 92 entrapped in luffa (Luffa cylindrica L.) sponge discs and Ca-alginate gel beads as the immobilizing matrices. At the end of 96 h fermentation, the final ethanol concentrations were 58.7 ± 0.09 and 59.1 ± 0.08 g/l molasses with luffa and Ca-alginate entrapped Z. mobilis cells, respectively exhibiting 83.25 ± 0.03 and 84.6 ± 0.02 % sugar conversion. There was no statistical significant difference (Fischer's LSD) in sugar utilization (t = 0.254, p <0.801) and ethanol production (t =-0.663, p <0.513) between the two immobilization matrices used. Further, the immobilized cells in both the matrices were physiologically active for three more cycles of operation with less than 15 % decrease in ethanol yield in the 4th cycle, which was due to some leakage of cells. In conclusion, luffa sponge was found to be equally good as Ca-alginate as a carrier material for bacterial (Z. mobilis. cell immobilization for ethanol production. Further, it has added advantages such as it is cheap, non-corrosive and has no environmental hazard.


Subject(s)
Enzyme Activators , Ethanol/analysis , Fermentation , Luffa/growth & development , Molasses/analysis , Zymomonas/isolation & purification , Cells, Immobilized , Methods
16.
Electron. j. biotechnol ; 15(1): 3-3, Jan. 2012. ilus, tab
Article in English | LILACS | ID: lil-640529

ABSTRACT

The biodegradation kinetics of o-cresol was examined by acclimatized P. putida DSM 548 (pJP4) in batch experiments at varying initial o-cresol concentrations (from 50 to 500 mg/L). The kinetic parameters of o-cresol aerobic biodegradation were estimated by using the Haldane substrate inhibition equation. The biodegradation kinetics of o-cresol was investigated. In batch culture reactors, the Maximum specific growth rate (μmax), Monod constant (Ks) and the inhibition constant (Ki) were established as 0.519 h-1, 223.84 mg/L and 130.883 mg/L, respectively. o-cresol biodegradation in a batch-recirculation bioreactor system by immobilized P. putida was also studied. The recycled packed bed reactor system, which was composed of Ca-alginate beads and pumice on which cells immobilized, has been performed to determine possible stability for further developments.


Subject(s)
Biodegradation, Environmental , Cresols/metabolism , Pseudomonas putida/chemistry , Bioreactors , Cells, Immobilized , Phenols/metabolism , Kinetics
17.
Iranian Journal of Environmental Health Science and Engineering. 2011; 8 (3): 245-254
in English | IMEMR | ID: emr-137348

ABSTRACT

The removal of hydrogen sulfide [H[2]S] from contaminated airstream was studied in a biotrickling filter [BTF] packed with open-pore polyurethane foam as a carrier of Thiobacillus thioparus [DSMZ5368] with counter current gas/liquid flows. The effect of operating parameters on BTF performance was studied. Experiments were performed at different Empty Bed Residence Times [EBRT] from 9 to 45 seconds, and different initial H[2]S concentration from 25 to 85 ppm. The results showed reasonable performance of the BTF, in H[2]S removal from the synthetic gas stream. However, the performance was somewhat lower than other studies in BTF in which either Thiobacillus thioparus with other packings or polyurethane foam with other microbial cultures were used. The effect of liquid recirculation rate [LRR] in the range of 175-525 ml/min [0.46-1.34 m/h] on BTF performance was also studied. Results showed that increasing LRR from 175 to 350 mL/min resulted in significant enhancement of H2S removal efficiency, but further increase in LRR up to 525 mL/min had an insignificant effect. H[2]S elimination at different heights of the bed was studied and it was found that decrease in EBRT results in more homogeneous removal of the pollutant in BTF. Determination of microbial species in the BTF after 100 days performance showed that during BTF operation the only H[2]S degrading specie was Thiobacillus thioparus


Subject(s)
Cells, Immobilized , Filtration/instrumentation , Polyurethanes/chemistry , Thiobacillus/metabolism , Biodegradation, Environmental , Biomass , Biofilms
18.
Electron. j. biotechnol ; 13(3): 2-3, May 2010. ilus, tab
Article in English | LILACS | ID: lil-577097

ABSTRACT

Microencapsulation technique appears helpful for more protection of Bifidobacteria against acid inhibitory effect. The effect of medium composition and product inhibitory in free cell culture, as well as the effect of the coating materials in immobilized cells, on biomass growth, acid production and substrate utilization kinetics of Bifidobacterium animalis subsp. lactis Bb 12 in uncontrolled batch fermentation was examined. The Monod and the Luedeking and Piret equations with a product inhibition term involving toxic power terms improved model efficiency for both growth and production. The model showed that media and coating materials had an effect on toxic power terms. Cell immobilization had a positive impact on B. animalis culture. Kinetic analysis revealed the permeability of the coating material had a major impact on culture parameters; permeability increased in the following way: Gellan xanthan < Alginate chitosan < K-Carageenan-locust been, and hence growth parameters x m, maximum specific growth rate (h-1) (um) and monod constant (g lactose L-1) (K S) followed the same trend as well as the linking between growth and production. The link between the microbial environment and cell growth was highlighted by the model. It was shown that for an increasing protect effect of coating materials against environmental deleterious factors, namely a decrease of the permeability, transport limitation occurred, which was disadvantageous for cell formation.


Subject(s)
Bifidobacterium/growth & development , Bifidobacterium/metabolism , Cells, Immobilized , Chromatography, High Pressure Liquid , Culture Media , Fermentation , Kinetics
19.
Chinese Journal of Biotechnology ; (12): 1444-1450, 2010.
Article in Chinese | WPRIM | ID: wpr-351575

ABSTRACT

Sodium cellulose sulfate (NaCS)/Ploy-dimethyl-dially-ammonium-chloride (PDMDAAC) microcapsules were used as a novel pseudo "Cell Factory" to immobilize mixed bacteria for hydrogen production under anaerobic conditions. Compared to free cells, the hydrogen production was increased more than 30% with NaCS/PDMDAAC microcapsules as the pseudo "Cell Factory". The biomass was increased from 1.5 g/L in free cell culture to 3.2 g/L in the pseudo "Cell Factory". This pseudo "Cell Factory" system showed the excellent stability during 15 repeated-batches. The hydrogen yield maintained 1.73-1.81 mol H2/mol glucose. The fermentation cycle was shortened from 48 h to 24 h, resulting in an increase of 198.6% in the hydrogen production rate. There were high percentage of butyric acid and acetic acid in the culture broth, which meant that the pseudo "Cell Factory" established in the present work could be used for the multi-product system.


Subject(s)
Bacteria , Classification , Genetics , Metabolism , Capsules , Cells, Immobilized , Metabolism , Cellulose , Chemistry , Fermentation , Hydrogen , Metabolism , Polyethylenes , Chemistry , Quaternary Ammonium Compounds , Chemistry
20.
Acta sci., Health sci ; 31(2): 113-118, jul.-dez. 2009. graf, ilus
Article in Portuguese | LILACS | ID: lil-538253

ABSTRACT

A conservação de células sem mudanças morfológicas, fisiológicas ou genéticasé uma necessidade da biotecnologia. Bacillus firmus cepa 37 é uma bactéria esporulada produtora da enzima ciclodextrina glicosiltransferase (CGTase), que transforma o amido em ciclodextrinas (CDs). O objetivo deste estudo foi avaliar a manutenção e preservação de B. firmus cepa 37 estocada em meio de cultivo sólido, solo estéril e em glicerol a baixa temperatura (-70ºC). Para avaliação do melhor método de manutenção da bactéria foram utilizados procedimentos de imobilização das células em matrizes inorgânicas. As células imobilizadas foram submetidas ao teste do efeito da biomassa inicial e à microscopia eletrônica de varredura (MEV). O repique não foi um método adequado, pois a cepa diminuiu a produção de CGTase. A estocagem em solo estéril mostrou-se eficaz e a produção da enzima mantida constante. A conservação a baixas temperaturas também foi satisfatória, com contagem de células praticamente a mesma após 360 dias. A imobilização, avaliada por MEV, não mostrou diferença na adsorção das células conservadas pelos diferentes métodos. O mesmo ocorreu para o teste do efeito da biomassa inicial, que apresentou maior produção de beta-CD quando do uso de 1,5 g de células.


The conservation of cells without morphologic, physiologic or genetic changes is a biotechnology necessity. Bacillus firmus strain 37 is a sporulating bacteria that produces the cyclodextrin glycosyltransferase (CGTase) enzyme, which transforms starch into cyclodextrins (CDs). This study aimed to evaluate the maintenance and preservation of B. firmus strain 37 stored in a solid medium, sterile soil and in glycerol at low temperature (-70ºC). In order to evaluate the best bacteria maintenance method, cell immobilization procedures were used on inorganic matrices. The immobilized cells were submitted to the initial biomass effect test and scanning electron microscopy (SEM). Periodic transfer was not an appropriate method, because the strainreduced the production of CGTase. The storage in sterile soil proved effective and the enzyme production remained constant. The conservation in low temperatures was also satisfactory, with cell counts practically the same after 360 days. The immobilization evaluated by SEM did not show any difference in the adsorption of the cells preserved by the different methods. The same happened for the initial biomass effect test, which presented higher beta-CD production when 1.5 g of cells was used.


Subject(s)
Bacteria , Cells, Immobilized , Cyclodextrins , Preservation, Biological
SELECTION OF CITATIONS
SEARCH DETAIL